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Abstract: Ecosystem services are directly related to human well-being. Previous studies showed that
management policies and human activities alter the trade-offs and synergies of ecosystem services.
Taking effective measures to manage the trade-offs and synergies of ecosystem services is essential to
sustain ecological security and achieve a “win-win” situation between society and ecosystems. This
study investigated the spatiotemporal changes of water yield, soil conservation, and carbon seques-
tration in the Jiulianshan National Nature Reserve from 2000 to 2020 based on the InVEST model.
We distinguished spatial patterns of trade-offs and synergies between ecosystem services using the
correlation relationship analysis. Then we analyzed the response of ecosystem services relationships
among different vegetation types and elevation bands. The results showed that water yield and
carbon sequestration presented an overall upward trend, while soil conservation remained a marginal
degradation. Rising ecosystem services were mainly in the central, western, and southeastern regions,
and declining areas were mainly distributed in the midwestern and northeastern fringes. Synergies
spatially dominated the interactions among water yield, soil conservation, and carbon sequestration,
and the trade-offs were primarily concentrated in the northern, southern, and southwestern fringes.
Among the different vegetation types, synergies dominated ecosystem services in broad-leaved
forests, coniferous forests, mixed forests, and Moso bamboo forests and in grass. The trade-offs
were gradually reduced with elevation. This study highlighted that trade-off of ecosystem services
should be incorporated into ecological management policies, strengthening the effectiveness of nature
reserves in protecting and improving China’s ecosystem services.

Keywords: ecosystem services; national nature reserve; spatiotemporal dynamics; trade-off; synergy

1. Introduction

Ecosystem services are defined as benefits derived from ecosystems and which are
the basis for human survival and sustainable socioeconomic development [1]. However,
the supply capacity of ecosystem services has decreased with global change and rapid
socioeconomic development [2,3]. According to a report of the Millennium Ecosystem
Assessment (MEA), approximately 60% of the world’s ecosystem services are in degrada-
tion, which could threaten global ecological security [4]. Therefore, policymakers should
better understand the spatiotemporal dynamics and relationships of ecosystem services for
designing sustainable ecological management policies [5,6].

The contradiction between human demands and ecosystem diversity leads to the com-
plex relationships of ecosystem services. Synergies and trade-offs are typical relationships
of ecosystem services [7]. Synergies are situations in which the combined effect of both
services is greater than the sum of their separate effects [8]. Trade-offs are situations in
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which one ecosystem service increases due to a decline in another ecosystem service [9].
In trade-off situations, management decisions need to be made between options for en-
hancing ecological benefits that cannot be satisfied simultaneously, leading to changes
in ecosystem service interactions [10]. Reducing the impacts of trade-offs and enhancing
synergies should be a key consideration in making ecosystem management policies [11].
Therefore, clarifying the trade-offs and synergies among multiple ecosystem services is
necessary to design ecological protection and sustainable development policies [12].

Statistical analysis methods have been widely used to identify trade-offs and synergy
relationships between ecosystem services in previous studies [13,14]. For example, Bai et al.
applied correlation analysis to compare the relationships among ecosystem services in
the Baiyangdian watershed [15]. Turner et al. used cluster analysis to identify ecosystem
service bundle types, then analyzed the multiple interactions of ecosystem services in
Denmark [16]. However, the relationships of ecosystem services are not always linear
and vary over time and space [17]. Existing methods for ecosystem services trade-offs
cannot reflect the non-linear relationships and spatial heterogeneity of ecosystem services.
Moreover, most previous studies focused on quantifying ecosystem service relationships
through the snapshot approach or static analysis [18,19]. Research for long-time series based
on spatially explicit methods is needed to improve the efficiency of regional ecological
management [20].

Conservation areas were designated to protect the environment and maintain eco-
logical security [21]. Nature reserves are the main protected areas and effective measures
for conserving ecosystem services [22]. Nature reserves have a higher supply capacity of
ecosystem services than other regions [23]. However, the ecological environment in China
has undergone tremendous pressure due to rapid socioeconomic transformations [24]. Na-
ture reserves will face an unprecedented challenge for maintaining long-term sustainable
development within this context. This requires policymakers to formulate policies that
minimize trade-offs of ecosystem services and maximize win-win relationships between
society and ecosystems in nature reserves [25]. Therefore, it is necessary to identify the
dynamics and relationships of ecosystem services in nature reserves to provide valid eco-
logical management proposals [26]. This will promote the effectiveness of nature reserves
in protecting the ecological environment and implementing sustainable development goals.

Nature reserves could benefit from the balance between strict protection and sustain-
able use of natural resources, contributing significantly to the ecological security of human
society [27]. Although nature reserves are generally believed to be the cornerstones of
ecosystem conservation and the safest strongholds of wildlife, the problems of biodiversity
degradation, mismanagement, and human encroachments are still widespread [28–30].
Jiulianshan National Nature Reserve is a typical forest reserve located at a transitional belt
between middle and south subtropical evergreen forests in China [31]. This reserve is an
important ecological barrier area in southeastern China [32]. It is necessary to identify
relationships of ecosystem services in nature reserves to assess the existing ecological
management strategies. This study aims to provide a theoretical basis for evaluating the
effectiveness of nature reserves on sustainable development and effective policy support on
the ecological management of nature reserves. We investigated their spatial and temporal
changes in water yield, soil conservation, and carbon sequestration from 2000 to 2020
based on InVEST model. We identified the trade-offs and synergies of three ecosystem
services through correlation analysis. Then we analyzed the differences in trade-offs and
synergies of ecosystem services among different vegetation types and elevation bands.
Specifically, we (1) examined the spatiotemporal patterns of ecosystem services under the
existing ecological management policies, (2) analyzed the spatial characteristics of trade-
offs and synergies of ecosystem services, and (3) quantified the differences in trade-offs
and synergies of ecosystem services among different vegetation types and elevation bands.
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2. Materials and Methods
2.1. Study Area

Jiulianshan National Nature Reserve (24◦29′18′′–24◦38′55′′ N, 114◦22′50′′–114◦31′32′′ E)
is located in southern Jiangxi Province, China (Figure 1). The total area of this reserve
is 13,411.6 ha, spanning almost 15.7 km north-south and 15 km east-west. The elevation
ranged from 280 to 1434 m, and the terrain is low in the north and high in the south.
Jiulianshan National Nature Reserve belongs to the East Asian monsoon climate zone,
with a warm and humid climate and distinct dry and wet seasons. The average annual
precipitation is 2155.6 mm, the average annual temperature is 16.4 ◦C, and the annual
evaporation is 790.2 mm. Jiulianshan National Nature Reserve is highly valuable in
biodiversity and has a typical, large-scale and well-preserved subtropical forest ecosystem.
The main type of vegetation in this area is the broad-leaved evergreen forest, including
Castanopsis carlesii (Hemsl., Hayata.), Schima superba (Gardn. et Champ.), and Litsea elongata
(Wall. ex Nees Benth. et Hook. F). Coniferous forests are also widespread, such as Pinus
massoniana (Lamb.), Cunninghamia lanceolata (Lamb., Hook)., and Taxus wallichiana var. mairei
(Lemee & H. Léveillé, L. K. Fu & Nan Li). Moso bamboo forests are mainly composed of
Phyllostachys edulis (Carriere, J. Houzeau) (Supplementary Material Figure S1). In addition
to vegetation resources there are abundant animal resources, such as 384 wild vertebrates
and 1404 insect species. Moreover, there are 9 rural settlements in reserve, and most of the
residents are engaged in agriculture and forestry production.

Figure 1. The geographic location, elevation, and land use/land cover types of the study area.
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2.2. Methods
2.2.1. Model Parameterization

The land use/land cover map for 2000, 2010, and 2020 was obtained from the 30 m
resolution Global Land Cover Dataset (GlobeLand30, http://www.globallandcover.com/,
accessed on 15 January 2022). The 30 m Digital Elevation Model (DEM) data were provided
by the Chinese Academy of Sciences (http://www.gscloud.cn, accessed on 15 January
2022). Soil data were provided by the Harmonized World Soil Database (Harmonized
World Soil Database, HWSD). Meteorological data, including precipitation, temperature,
and radiation, were obtained from the Jiulianshan National Nature Reserve Administration
and the National Meteorological Administration of China (http://data.cma.cn, accessed
on accessed on 15 January). The soil erodibility factor (K) was provided by the Center
for Geodata and Analysis, Faculty of Geographical Science, Beijing Normal University
(https://gda.bnu.edu.cn/, accessed on 15 January 2022) [33]. For model parameterization,
all data were resampled to a 30 m grid.

The potential evapotranspiration (ET0) was calculated based on the Modified-Hargreaves
model [34]. Wischmeier’s monthly scale formula was used to calculate the rainfall erosiv-
ity factor (R) [35]. The input raster maps (temperature, precipitation, ET0, and R) were
interpolated to a 30 m resolution by the Machine Learning Ensemble & Thin-Plate-Spline In-
terpolation model (MACHISPLIN). Aboveground carbon stocks and soil carbon stocks were
collected from forest inventory data and previous studies in our study area (Supplementary
Material Table S1) [36–38]. The root depth data and other parameters in the biophysical
table were set according to the recommendations of the InVEST 3.8.9 model user’s guide
and published research articles (Supplementary Material Tables S2 and S3) [39–41].

2.2.2. Ecosystem Services Assessment

The Integrated Valuation of Ecosystem Service and Tradeoffs (InVEST) was used
to evaluate ecosystem services from 2000 to 2020. InVEST model is a spatially explicit
model for assessing ecosystem services under different land use/land cover types or
different socioeconomic scenarios. This model explores how changes in ecosystems benefit
people [42]. It has been widely used in ecosystem service research due to its advantages of
low model parameters, low data requirements, and global applicability [43]. Water yield,
soil conservation, and carbon sequestration were simulated using InVEST 3.8.9 at a 30 m
spatial resolution.

(1) Water yield

The water yield model of the InVEST model was mainly based on the Budyko curve
and the annual average precipitation. Water yield is calculated by subtracting the actual
evaporation from the precipitation of each grid cell [44]. Water yield is calculated as follows:

Yxj =

(
1−

Exj

Px

)
· Px (1)

where Yxj is the water yield of land use/land cover type j in pixel x (mm/year), Exj is
the annual actual evapotranspiration of land use/land cover type j in pixel x (mm/year),
and Px is the average annual precipitation in pixel x (mm/year).

(2) Soil conservation

The sediment delivery ratio sub-model of the InVEST model can be used to calculate
the potential soil erosion (RKLS), actual soil erosion (USLE), and soil conservation (SD) for
each cell as follows:

RKLS = R × K × LS, (2)

USLE = R × K × LS × P × C, (3)

SD = RKLS − USLE, (4)

http://www.globallandcover.com/
http://www.gscloud.cn
http://data.cma.cn
https://gda.bnu.edu.cn/
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where RKLS, USLE, and SD represent potential soil erosion [t/(ha·year)], actual soil erosion
[t/(ha·year)], and soil conservation [t/(ha·year)], respectively. R is the rainfall erosivity
index [MJ·mm/(ha·h·year)]. K is the soil erodibility index [t·ha·h/(MJ·ha·mm)]. LS is
the length-gradient factor. C is the cover-management factor for the USLE, and P is the
supporting practice factor for the USLE.

(3) Carbon sequestration

The carbon storage and sequestration model of the InVEST model takes the different
land use/land cover types as the evaluation unit, then estimates the biomass of each
carbon pool by multiplying the average carbon density of the different land use/land
cover types by the area of each evaluation unit. The total carbon sequestration of terrestrial
ecosystems is the sum of four fundamental carbon pools, including the carbon sequestration
of aboveground biomass, belowground biomass, soil organic matter, and dead organic
matter. The total carbon sequestration is calculated as follows:

Ctotal = Cabove + Cbelow + Csoil + Cdead, (5)

where Ctotal is the total carbon stocks (t/ha), Cabove is aboveground carbon stocks (t/ha),
Cbelow is belowground carbon stocks (t/ha), Csoil is soil organic carbon stocks (t/ha),
and Cdead is dead organic matter carbon stocks (t/ha).

2.2.3. Model Calibration and Validation

The seasonal parameter Z-value is an empirical constant that indicates the regional
precipitation distribution and geohydrological characteristics [45]. Correlation between
simulated data and field survey data can ensure the accuracy of the water yield model.
In this study, the average runoff volume (4.55 × 106 m3) of the Jiulianshan National
Nature Reserve No.4 measuring weir (24◦31′45′′ N, 114◦27′36′′ E) in 2010 was used as a
reference to calibrate the accuracy of the simulation results. The results of the correlation
analysis indicated that the water yield was negatively correlated with the Z-value (R2 = 0.75,
p < 0.01), and the fitted equation showed that the simulated water yield matches best with
the natural runoff in 2010 when Z = 3.33 (Figure 2).
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Figure 2. The correlation between water source content and seasonal factor Z value.

We selected 100 forest survey plots (20 m × 20 m) to validate the carbon storage and
sequestration model of the InVEST model. At each plot we identified species and measured
the diameter at breast height of trees over 1 cm. Three randomly placed sample squares
(5 m × 5 m) within each sample plot were used for soil sampling. The results showed
that the simulation results were close to the forest survey data and that the correlation
coefficient between the two is 0.78, which means a high correlation (R2 = 0.78, p < 0.01,
Figure 3).
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2.2.4. Analysis of Trade-Offs and Synergies of Ecosystem Services

Correlation relationship analysis was applied to analyze trade-offs and synergies of
ecosystem services. When the correlation coefficient between two ecosystem services is
positive, they are considered synergistic, and when the correlation coefficient is negative,
it is a trade-off relationship [46]. The correlation coefficients were calculated as follows:

r12(ij) =
∑n

1

(
ES1n(ij) − ES1n(ij)

)
×∑n

1

(
ES2n(ij) − ES2n(ij)

)
√

∑n
1 (ES1n(ij) − ES1n(ij))

2 ×∑n
1 (ES2n(ij) − ES2n(ij))

2
(6)

where ES1 and ES2 are two ecosystem services; r is the correlation coefficient between ES1
and ES2; i and j are the number of rows and columns of raster image elements; n is the time
series of raster data; and r12(ij) is the correlation coefficient between ES1 and ES2 on image
element ij when other ecosystem services change at n years. r12(ij) > 0 indicates a synergistic
relationship between ES1 and ES2; r12(ij) = 0 indicates no correlation between ES1 and ES2;
r12(ij) < 0 indicates trade-off relationship between ES1 and ES2; and the larger value of r12(ij)
indicates a stronger correlation between ES1 and ES2.

We classified the correlation coefficients into seven levels: no relationship (r = 0);
synergy** (r > 0, 0.01 < p < 0.05); synergy* (r > 0, 0.05 < p < 0.1); synergy (r > 0, 0.1 < p); trade-
off (r < 0, 0.01 < p); trade-off* (r < 0, 0.05 < p < 0.1); and trade-off** (r < 0, 0.01 < p < 0.05,
Table 1).

Table 1. The relevance classification level of trade-off and synergy relationships between ecosys-
tem services.

Relevance Classification Level r p

No relationship r = 0 0.01 < p < 0.05
Synergy ** r > 0 0.01 < p < 0.05
Synergy * r > 0 0.05 < p < 0.10
Synergy r > 0 0.10 < p
Trade-off r < 0 0.10 < p

Trade-off * r < 0 0.05 < p < 0.10
Trade-off ** r < 0 0.01 < p < 0.05

*: 0.05 < p < 0.10; **: 0.01 < p < 0.05.
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3. Results
3.1. Changes in Ecosystem Services from 2000 to 2020
3.1.1. The Spatial Pattern of Ecosystem Services

Water yield, soil conservation, and carbon sequestration maintained a stable spatial
pattern in 2000–2020. Three ecosystem services exhibited their spatial distribution charac-
teristics (Figure 4). The higher value of the water yield was clumped within the central,
northern, and northwestern areas (Figure 4a), where there were high forest cover and
precipitation. In contrast, the lower value of water yield was mainly concentrated in the
central-western and southeastern areas. The areas with a lower value of water yield in
2020 decreased in the southeast compared to 2000 and 2010. The higher-value areas of
soil conservation were scattered; they were mainly distributed in the study area’s central,
western, and southeastern areas (Figure 4b). The spatial pattern of carbon sequestration has
not changed substantially because of the stable land use/land cover structure. The areas
with a higher value of carbon sequestration are mainly concentrated in forests, while the
areas with a lower value were in cropland, in water, and on construction land (Figure 4c).

Figure 4. The spatial pattern of ecosystem services in the study area in 2000, 2010, and 2020; (a) water
yield; (b) soil conservation; (c) carbon sequestration.
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3.1.2. Temporal and Spatial Changes in Ecosystem Services from 2000 to 2020

The changes in water yield and carbon sequestration exhibited an upward trend
from 2000 to 2020, while soil conservation remained a marginal degradation. Water yield
increased by 13.4% and carbon sequestration increased by 0.4% in 2000–2020. Soil conser-
vation declined marginally from 14.85 × 106 t in 2000 to 14.55 × 106 t in 2020. The areas
where the water yield increased were mainly concentrated in the central areas (Figure 5a).
The spatial distribution of the soil conservation rising areas was different. From 2000 to
2010, the rising soil conservation areas were mainly concentrated in the central, western,
and southern areas, while from 2010 to 2020 they were mainly clumped within the east-
ern, northeastern, and southwestern regions (Figure 5b). The supply capacity of carbon
sequestration was slightly enhanced in the central, northeastern, and southwestern areas
(Figure 5c).
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3.2. Trade-Offs and Synergies of Ecosystem Services

We calculated the pixel-scale spatial correlation coefficients to explore the trade-offs
and synergies between each ecosystem service (Figure 6). The result showed that synergies
were spatially dominated in water yield, soil conservation, and carbon sequestration
interactions. The synergies areas accounted for 67.90% of soil conservation and water
yield and were spatially aggregated in the central and southern regions. The weak trade-
offs were mainly concentrated in the eastern, northern, and western areas, while strong
trade-offs were concentrated in the northern, southern, and southwestern marginal regions
(Figure 6a). For soil conservation and carbon sequestration, the synergistic relationships
were mainly distributed in the study areas’ central, southern, and western parts, which
accounted for 90.35%. The trade-off areas were small and dispersed and were spatially
aggregated in the northern, southern, and southwestern fringes (Figure 6b). For carbon
sequestration and water yield, the synergistic relationships were mainly clumped within
the eastern, central, and southern areas, which accounted for 89.14%. The trade-off areas
were spatially aggregated in the northern and western regions (Figure 6c).
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The distribution of trade-offs and synergies among ecosystem services in various
vegetation types is shown in Figure 7. Synergistic relationships between soil conservation
and carbon sequestration were dominant in cropland, grass, and shrub, and occupied
84.89%, 77.45%, and 51.29%, respectively (Figure 7a). The trade-off relationships were most
significantly concentrated in broad-leaved, coniferous, mixed, and Moso bamboo forests.
The trade-offs between soil conservation and water yield were mostly concentrated in
cropland and shrub, which accounted for 70.25% and 69.24% (Figure 7b). The synergistic re-
lationships were mostly in broad-leaved forests, coniferous forests, mixed forests, and Moso
bamboo forests and in grass. For carbon sequestration and water yield, the synergies were
significantly concentrated in various vegetation types, which all accounted for more than
50% (Figure 7c).
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Figure 8 shows the distribution of ecosystem services of trade-off and synergies
situations at different elevation bands. For soil conservation and carbon sequestration the
trade-offs were concentrated in all elevation bands, and they all accounted for more than
50% (Figure 8a). The trade-offs of areas below 1000 m were significantly stronger than
that above 1000 m. Synergies were mostly concentrated in all elevation bands (Figure 8b).
Among them, strong synergies were dominant. For soil conservation and water yield
the synergistic relationships were concentrated in areas above 500 m, and the trade-offs
were mainly in areas below 500 m (Figure 8c). The proportion of trade-offs increased
with elevation.
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4. Discussion
4.1. Spatial and Temporal Variation in Ecosystem Services

In this study we found that the supply capacity of water yield and carbon sequestration
exhibited an overall upward trend from 2000 to 2020, while soil conservation remained a
marginal degradation. This result indicates that ecosystem services in Jiulianshan National
Nature Reserve presented improvements over the 20 years. However, there were significant
differences in the spatial distribution of variation in ecosystem services (Figure 5). The spa-
tial and temporal changes of ecosystem services could be associated with climate [47].
Previous research has shown that elevated temperature and precipitation within a certain
range are conducive to ecosystem services [48,49]. The warm and humid climate in the
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conservation area could favor vegetation improvement. Compared with low vegetation
cover areas, high vegetation cover areas have a stronger ability to enhance water yield
and control soil erosion by intercepting rainfall, increasing infiltration, and stabilizing
the soil [50]. In addition, implementing ecological restoration projects positively impacts
ecosystem services, which could protect the ecological environment by restoring and pro-
tecting forests [51]. However, human activities, such as excessive land utilization, could
decrease supply to multiple ecosystem services in partial areas [52]. In the conservation
area, the low-altitude and gentle terrain of the midwestern and northeastern regions could
facilitate agricultural production activities by the residents. Without appropriate compen-
satory measures, agricultural activities may cause a reduction in soil fertility and change
the structure of the soil [53]. To better harmonize the relationship between human activities
and the natural environment, the midwestern and northeastern areas of the conservation
area should receive increased attention.

The results suggest that the existing protection policies of the Jiulianshan National
Nature Reserve effectively curbed deforestation and land reclamation, but more detailed
management measures are still needed. The reserve should also further increase financial
investment and cooperate with social welfare organizations to obtain more operating funds.
The financial investment in protected areas indirectly reflects ecosystem management policy
and positively relates to ecosystem service conservation effectiveness [54]. Meanwhile, real-
izing the diversification of residents’ income sources is essential to reducing the destruction
of natural resources and improving ecosystem services’ supply capacity [55]. Therefore,
decision-makers should also consider the spatial heterogeneity of ecosystem services and
their natural and environmental drivers.

4.2. Quantifying Trade-Offs and Synergistic Relationships of Ecosystem Services

Our research showed the dominant synergies between water yield, soil conservation,
and carbon sequestration in the Jiulianshan National Nature Reserve. The results are
generally consistent with those of previous studies [56–58]. Nearly 95% of the conservation
area consists of forests, grasslands, and shrub. The high vegetation cover may explain
the strong synergies of ecosystem services, as it enhances carbon sequestration by photo-
synthesis and mitigates soil erosion [59]. The supply capacity of the water yield could be
enhanced, because vegetation intercepts, absorbs, and stores precipitation from the canopy
of dead leaf vegetation and the subsoil [51,60]. The distribution of trade-offs in the study
area was dispersed and concentrated in the north, midwestern, and southeastern areas,
especially in peripheral areas. This may be interpreted as the consequence of the effects
of human activities. Uncontrolled development of resources could cause artificial surface
expansion, and land cover/land use types or vegetation types may change accordingly [61].
The central areas of the conservation area are densely vegetated, and land-use conflicts were
weak there. Under strict ecological policies, the major areas were relatively less affected by
external drivers, which may explain why there were strong synergies between ecosystem
services in these areas. When making management policies, more consideration should be
given to the spatial heterogeneity of ecosystem services, which will benefit the refinement
of ecological management measures.

This reserve has a typical and well-preserved subtropical forest system. In the broad-
leaved, coniferous, mixed, and Moso bamboo forests, synergies among water yield and
other services were dominant. Forests are the main ecological construction and restoration
means, by providing several intangible benefits such as regulating air humidity, protecting
watersheds, and absorbing carbon and nutrient cycling [62]. However, forests cannot si-
multaneously produce multiple ecosystem services due to the trade-offs among competing
functions. Forests could absorb carbon by photosynthesis and enhance the supply capacity
of carbon sequestration, but excessive rainfall intensity could lead to soil erosion. These
may result in trade-offs between soil conservation and carbon sequestration. Therefore,
the construction of soil and water conservation engineering measures should be strength-
ened in forestlands with high precipitation and rainfall intensity. Trade-offs between soil
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conservation and water yield were primarily concentrated in cropland and shrub. Water-
saving and pollution reduction measures should be implemented in cropland, such as drip
irrigation and water and fertilizer integration [50]. Moreover, the reserve should take some
comprehensive protection measures in the shrub, such as increasing vegetation density
and improving vegetation structure to strengthen the plant root system and upgrade water
retention [63]. In addition, we found that trade-offs among ecosystem services decreased
with increasing elevation bands. In the low elevation zone, policymakers should pay more
attention to trade-offs between soil conservation and carbon sequestration. Commercial
plants could be incorporated into mixed farming, to protect vegetation diversity and the
livelihood flexibility of farmers in reserve [64]. In the areas above 1000 m, the forests are
primeval and well-preserved. Enhancing patrolling efforts is efficient to reduce human
interference and prevent further damage [65]. Moreover, the Jiulianshan National Nature
Reserve should be managed more scientifically and constructed with corresponding en-
gineering measures [66]. Consider establishing coordination mechanisms with multiple
stakeholders when implementing ecological restoration measures. In addition to these
macro-protection principles, we should also consider the suitability of various vegetation
types for different environments and elevations [67].

4.3. Limitations

The InVEST model was used to quantitatively evaluate water yield, soil conserva-
tion, and carbon sequestration from 2000 to 2020. This model has been recognized as an
appropriate tool because it achieves the expected results with fewer data and simplified
computational steps [43]. Our study improved the accuracy and reliability of the evaluation
results through model validation. The validation results showed that the study results
were in good agreement with the actual value. However, the modeling and data limitations
of the InVEST model should be recognized. This model cannot address daily or monthly
climate data, so our study ignored daily or monthly extreme climatic events [68]. Moreover,
the carbon-storage-and-sequestration model uses a simplified carbon cycle that quanti-
fies the amount of static carbon storage, which lacks consideration of the transformation
between various carbon pools. Therefore, extreme climate effects on ecosystem services
and the optimization of the accuracy of simulation models need more attention in future
research to reduce the uncertainty of model assessment results.

5. Conclusions

This study investigated spatial and temporal changes in water yield, soil conservation,
and carbon sequestration from 2000 to 2020 in the Jiulianshan Nation Nature Reserve by
applying the InVEST model. Spatial patterns of trade-offs and synergies were distinguished
by correlation analysis. Then we analyzed the response of ecosystem services relationships
among different vegetation types and elevation bands. Our results showed that water yield
and carbon sequestration exhibited an overall upward trend from 2000 to 2020, while soil
conservation remained a marginal degradation. Ecosystem services increased, in aggregate,
in the central, western, and southeastern areas, and decreased in the midwestern areas
and northeastern fringes. The synergies among water yield, soil conservation, and carbon
sequestration were spatially dominant, while the trade-offs were mainly concentrated in
the northern, southern, and southwestern areas. Among the different vegetation types,
synergies dominated ecosystem services in broad-leaved forests, coniferous forests, mixed
forests, and Moso bamboo forests and in grass. Moreover, with the increase in elevation,
the trade-offs were gradually reduced. Therefore, to maximize the benefits of ecosystem
services, policymakers should focus on the trade-off areas and strengthen the implemen-
tation of ecological projects based on the balance of ecosystem services. This study could
provide a theoretical basis for implementing management strategies and the sustainable
development of society, economy, and ecology in China’s nature reserves.
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